

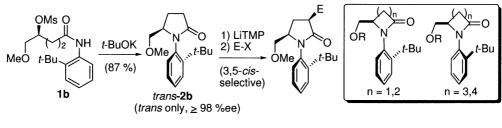
Tetrahedron Letters 41 (2000) 8539-8544

TETRAHEDRON LETTERS

Stereoselective synthesis of diastereomeric atropisomeric lactam with various ring sizes and their structural characterization

Osamu Kitagawa, Masao Fujita, Mitsuteru Kohriyama, Hiroshi Hasegawa and Takeo Taguchi*

Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

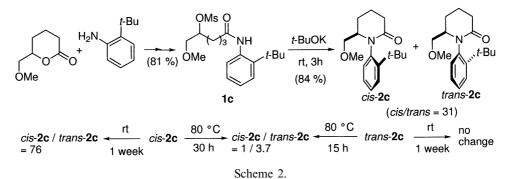

Received 25 August 2000; accepted 14 September 2000

Abstract

Diastereomeric atropisomeric *N*-ortho-tert-butylphenyl lactams with ring sizes from four to seven were prepared with high diastereoselectivity through an aminocyclization reaction. In the case of four- and five-membered ring formation, thermodynamically stable atropisomeric lactams having a *trans*-relation-ship between the ortho-tert-butyl group and the C-4 or C-5 substituent were obtained, while in the six- and seven-membered ring-forming reaction, *cis*-atropisomeric lactams, kinetic controlled products, were exclusively isolated. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: atropisomerism; lactam; isomerization; diastereoselection.

In the course of our work in relation to optically active atropisomeric anilide chemistry,^{1–3} we recently reported a diastereoselective reaction using the lithium enolate of optically pure atropisomeric 5-methoxymethyl-*N-ortho-tert*-butylphenyl-2-pyrrolidinone *trans-***2b** (Scheme 1).^{2c,2e,4} In the reactions of the lactam enolate with electrophiles, stereocontrol on the basis of



Scheme 1.

^{*} Corresponding author. Tel and Fax: 81-426-76-3257; e-mail: taguchi@ps.toyaku.ac.jp

^{0040-4039/00/\$ -} see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01608-7

C-N atropisomerism overcame the usual influence of a chiral carbon (C-5) to preferentially give 3,5-cis-disubstituted-2-pyrrolidinone, which is difficult to obtain through known methodology.⁵ The optically pure atropisomeric anilide *trans*-2b having a *trans*-relationship between the ortho-tert-butyl group and the C-5 substituent was prepared with a complete stereoselectivity through an aminocyclization reaction of the mesylate 1b prepared from (S)-5-(methoxymethyl)butyrolactone and ortho-tert-butylaniline, while the origin of the *trans*-selectivity was not clear. In contrast to the complete *trans*-selectivity in the preparation of the five-membered lactam, it was found that the six-membered lactam-forming reaction with the mesylate 1c proceeds with high *cis*-selectivity (*cis*/*trans*=31) (Scheme 2). These contrasting results prompted us to study the synthesis of diastereomeric atropisomeric lactams with various ring sizes and their stereochemistries. In this paper, we report a stereoselective synthesis of diastereomeric atropisomeric lactams form four to seven and their structural characterization.

As mentioned above, the aminocyclization reaction of the mesylate 1c gave *cis*-6methoxymethyl-*N-ortho-tert*-butylphenyl-2-piperidinone *cis*-2c with high diastereoselectivity (cis/trans=31) (Scheme 2).⁶ The stereochemistry of lactam *cis*-2c having a *cis*-relationship between the *ortho-tert*-butyl group and the C-6 substituent was determined by X-ray analysis after conversion to hydroxymethyl derivative *cis*-3c (Fig. 1). The aminocyclization, which preferentially formed the *cis*-2c at rt, should be based on kinetic control, because isomerization between *cis*- and *trans*-2c via the free rotation around the C–N bond could hardly be observed after standing for a week at rt (Scheme 2).

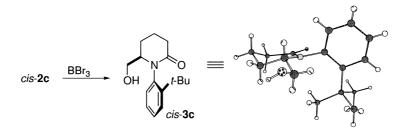
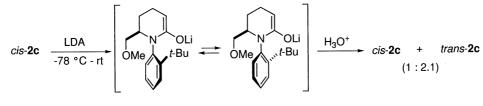



Figure 1. X-ray crystal structure of cis-3c

The isomerization was found to easily occur at 80°C. For example, on heating both diastereomerically pure *cis*-2c (30 h) and *trans*-2c (15 h) at 80°C, each isomer reached the thermodynamic ratio (*cis*/*trans*=1/3.7) (Scheme 2). This result is in contrast to that of a

five-membered lactam which easily and completely isomerizes to *trans*-**2b** from *cis*-**2b** at rt $(t_{1/2} = ca. 14 \text{ h})$. The higher rotational barrier of **2c** (cis-**2c**: $t_{1/2} = 602$ days at 27°C, rotational barrier = 28.3 kcal/mol)⁷ than that of **2b** could possibly be explained on the basis of the comparison of the C–N–C angle obtained by X-ray analysis of *trans*-2b^{2c,2e} and *cis*-**3c**. That is, the larger C(2)–N–C(6) angle (124.1°) of the six-membered lactam *cis*-**3c** in comparison with the C(2)–N–C(5) angle (112.7°) of the five-membered lactam *trans*-**2b** should result in a higher barrier of free rotation around the C(Ar)–N bond. It is noteworthy that isomerization to *trans*-**2c** from *cis*-**2c** through the formation of a lactam enolate easily occurs even below rt (Scheme 3).⁸ Isomerization of the lactam enolate having sp^3 -nitrogen may occur more easily than that of lactam *cis*-**3c** having sp^2 -nitrogen, because the tetrahedral structure of nitrogen may reduce steric repulsion between the *tert*-butyl group and carbonyl oxygen or the C-6 substituent during rotation around the C–N bond.

High *cis*-selectivity observed in the aminocyclization of **1c** may be rationalized on the basis of the transition-state model shown in Fig. 2. In the six-membered ring chair-type transition-state model A^{\neq} and B^{\neq} having a perpendicular Ar group to the (Z)-potassium iminoalcoholate plane, a counterclockwise rotation of the iminoalcoholate and Ar moieties may simultaneously occur with the cyclization. Since the *ortho-tert*-butyl group is located outside of the six-membered ring, the counterclockwise rotation should lead to the formation of a lactam having a β -tert-butyl group and not an α -one. Thus, the reaction through transition-state model A^{\neq} and B^{\neq} gives *cis*-**2c** and *trans*-**2c**, respectively. From the viewpoint of 1,3-diaxial repulsion, the reaction via A^{\neq} having an equatorial methoxymethyl group at the C-6 position should be preferred more than that via B^{\neq} having an axial one.

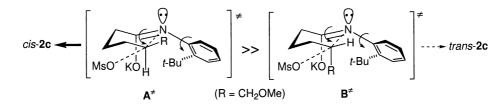
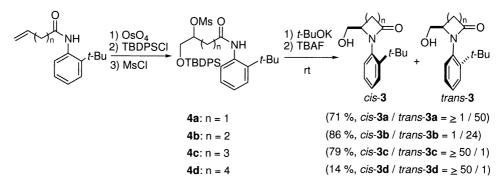
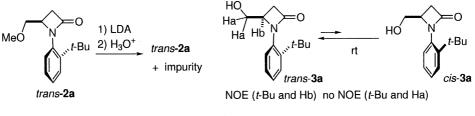


Figure 2. Possible transition state model of aminocyclization of 1c


Although we previously reported that the five-membered lactam-forming reaction (rt, 3 h) with mesylate **1b** exclusively gives *trans*-**2b** after extractive work-up and purification by column chromatography,^{2c,2e} the result of the six-membered lactam-forming reaction prompted us to reinvestigate the reaction of **1b** (Scheme 4). When ¹H NMR of the reaction mixture was quickly measured after aminocyclization of **1b** for 30 min at 0°C and subsequent extractive work-up, but without further purification, *cis*-**2b** was found to be formed as a major product (*cis*-**2b**/*trans*-**2b**=2.1/1). Under these conditions, starting material **1b** was not completely consumed. Further-

more, isomerization of *cis*-**2b** to thermodynamically stable *trans*-**2b** was observed at rt. This result indicates that the exclusive formation of *trans*-**2b** reported previously should involve the isomerization of initially formed *cis*-**2b**.⁹ The preferential formation of a *trans*-five-membered lactam through isomerization of *cis*-lactam was also observed in the reaction of mesylate **1e**; that is, a mixture of *trans*- and *cis*-**2e** (*trans*/*cis*=1.5), which was obtained by aminocyclization of **1e** for 3 h at rt reached the thermodynamic ratio (*trans*/*cis*=20) after standing for several weeks at rt.¹⁰



On the basis of these results, it was assumed that aminocyclization leading to the lactam having a large rotational barrier around the C–N bond (large C–N–C angle) may give a *cis*-lactam as a major stereoisomer through kinetic control. On the other hand, for the lactam having a small rotational barrier (small C–N–C angle), a *trans*-lactam may be preferentially formed through the isomerization of an unstable *cis*-lactam. To confirm this assumption, diastereomeric atropisomeric *N-ortho-tert*-butylphenyl lactams with ring sizes from four to seven were prepared in accordance with the reaction pathway shown in Scheme 5, and their stereochemistries were investigated. Four-membered lactam-forming reaction through aminocyclization of mesylates **4a** and subsequent desilylation gave *trans*-4-hydroxymethylazetidinone *trans*-**3a** in good yield (71%). Although existence of the *cis*-isomer could not be detected even through the enolate formation of 4-methoxymethylazetidinone *trans*-**2a**,⁸ the *trans*-conformer in **3a** could be confirmed by NOE experiment (Scheme 6). In the four-membered lactam, free rotation around the C–N bond may easily occur at rt because of the smaller C–N–C angle than that of the five-membered lactam. Contrarily, the seven-membered lactam-forming reaction with

mesylate 4d gave *cis*-lactam *cis*-3d with complete stereoselectivity at rt, while the chemical yield is extremely low (Scheme 5). The stereochemistry of lactam *cis*-3d was determined by X-ray analysis. Since no isomerization of *cis*-3d having a large C–N–C angle (124.2°) similar to that of six-membered lactam 3c was observed at rt, exclusive formation of *cis*-3d in aminocyclization of 4d should be due to kinetic control. Similarly to the preparation of 5- and 6-methoxymethyl lactams 2b and 2c, five- and six-membered lactam-forming reaction with mesylates 4b and 4c gave *trans*-3b and *cis*-3c with high diastereoselectivity, respectively.

Scheme 6.

In conclusion, we have found that diastereomeric atropisomeric *N*-ortho-tert-butylphenyllactams with various ring sizes can be prepared with high diastereoselectivity. The results described here should provide useful information on atropisomeric anilide chemistry.

Acknowledgements

We thank the Ministry of Education, Science, Sports and Culture of Japan for financial support.

References

- Papers in relation to stereoselective reaction using racemic or achiral atropisomeric anilide: (a) Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. C. J. Am. Chem. Soc. 1994, 116, 3131–3132. (b) Kishikawa, K.; Tsuru, I.; Kohomoto, S.; Yamamoto, M.; Yamada, K. Chem. Lett. 1994, 1605–1606. (c) Hughes, A. D.; Price, D. A.; Shishkin, O.; Simpkins, N. S. Tetrahedron Lett. 1996, 37, 7607–7610. (d) Curran, D. P.; Hale, G. R.; Geib, S. J.; Balog, A.; Cass, Q. B.; Degani, A. L. G.; Hernandes, M. Z.; Freitas, L. C. G. Tetrahedron: Asymmetry 1997, 8, 3955–3975. (e) Bach, T.; Schröder, J.; Harms, K. Tetrahedron Lett. 1999, 40, 9003–9004.
- Our papers on optically active atropisomeric anilide chemistry: (a) Kitagawa, O.; Izawa, H.; Taguchi, T.; Shiro, M. *Tetrahedron Lett.* 1997, 38, 4447–4450. (b) Kitagawa, O.; Izawa, H.; Sato, K.; Dobashi, A.; Taguchi, T.; Shiro, M. J. Org. Chem. 1998, 63, 2634–2640. (c) Fujita, M.; Kitagawa, O.; Izawa, H.; Dobashi, A.; Fukaya, H.; Taguchi, T. *Tetrahedron Lett.* 1999, 40, 1949–1952 (Corrigendum in relation to [α]_D of lactam *trans-2b: idem. ibid.* 2000, 41, 4997). (d) Kitagawa, O.; Momose, S.; Fushimi, Y.; Taguchi, T. *Tetrahedron Lett.* 1999, 40, 8827–8831. (e) Fujita, M.; Kitagawa, O.; Yamada, Y.; Izawa, H.; Hasegawa, H.; Taguchi, T. J. Org. Chem. 2000, 65, 1108–1114.
- Papers on optically active atropisomeric anilide chemistry by other groups: (a) Hughes, A. D.; Simpkins, N. S. Synlett. 1998, 967–968. (b) Hughes, A. D.; Price, D. A.; Simpkins, N. S. J. Chem. Soc., Perkin Trans. 1 1999, 1295–1304. (c) Kondo, K.; Fujita, H.; Suzuki, T.; Murakami, Y. Tetrahedron Lett. 1999, 40, 5577–5580. (d) Curran, D. P.; Liu, W.; Chen, C. H. J. Am. Chem. Soc. 1999, 121, 11012–11013. (e) Shimizu, K. D.; Freyer, H. O.; Adams, R. D. Tetrahedron Lett. 2000, 41, 5431–5434.
- 4. After publication of our paper (Ref. 2c), Simpkins et al. also reported the asymmetric reaction using optically active atropisomeric lactam: Godfrey, C. R. A.; Simpkins, N. S.; Walker, M. D. Synlett, 2000, 388–390.

- 5. For review: Najera, C; Yus, M. Tetrahedron: Asymmetry 1999, 10, 2245-2303.
- 6. The aminocyclization reaction was performed in accordance with our reported procedure (see Refs. 2c and 2e). *cis*-2c: colorless oil; ¹H NMR (CDCl₃) δ: 7.53 (1H, dd, *J*=1.9, 7.9 Hz), 7.24 (2H, m), 7.00 (1H, dd, *J*=1.9, 7.9 Hz), 3.90 (1H, m), 3.33 (1H, dd, *J*=8.2, 9.0 Hz), 3.18 (3H, s), 3.16 (1H, dd, *J*=3.5, 9.0 Hz), 2.39–2.62 (2H, m), 2.20 (1H, m), 2.05 (1H, m), 1.80–1.94 (2H, m), 1.36 (9H, s); ¹³C NMR (CDCl₃) δ: 172.7, 147.3, 138.3, 130.1, 128.0, 127.3, 127.0, 73.2, 60.8, 58.7, 36.5, 33.6, 32.0, 27.1, 19.6. *trans*-2c: colorless oil; ¹H NMR (CDCl₃) δ: 7.54 (1H, dd, *J*=1.7, 8.0 Hz), 7.24 (2H, m), 6.95 (1H, dd, *J*=1.6, 8.0 Hz), 3.69 (1H, m), 3.42 (1H, dd, *J*=6.5, 9.4 Hz), 3.37 (1H, dd, *J*=3.3, 9.4 Hz), 3.29 (3H, s), 2.59 (1H, m), 2.45 (1H, m), 2.05–2.20 (3H, m), 1.6 (1H, m), 1.36 (9H, s); ¹³C NMR (CDCl₃) δ: 171.7, 146.3, 138.4, 132.6, 129.3, 127.7, 126.2, 72.0, 58.9, 58.6, 35.7, 32.8, 31.7, 25.2, 17.8.
- 7. Rotational barrier and half-life of cis-2c were calculated from the Eyring equation.
- 8. The isomerization through the enolate formation has been also observed in five-membered lactam *trans*-2b (see Refs. 2c and 2e). Isomerization to thermodynamically unfavorable *cis*-2b from stable *trans*-2b partially occurred through the formation of the lithium enolate and subsequent protonation to give a mixture of *cis* and *trans*-2b in a ratio of 1: 2.6.
- Isomerization to a stable diastereomer through the rotation of the atropisomeric axis has also been found in diastereomeric atropisomeric naphthamide derivative. Clayden, J.; Lai, L. W. Angew. Chem., Int. Ed. 1999, 38, 2556–2558.
- 10. The decrease in the chemical yield in the reaction of **1e** is due to the formation of *O*-cyclized products as a side product.